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Abstract

Variations in chondrocyte density and organization in cartilage histology sections are associated 

with OA progression. Rapid, accurate quantification of these two features can facilitate the 

evaluation of cartilage health and advance the understanding of their significance. The goal of this 

work was to adapt deep-learning-based methods to detect articular chondrocytes and chondrocyte 

clones from safranin-O-stained cartilage to evaluate chondrocyte cellularity and organization. 

The U-net and “you-only-look-once” (YOLO) models were trained and validated for identifying 

chondrocytes and chondrocyte clones, respectively. Validated models were then used to quantify 

chondrocyte and clone density in talar cartilage from Yucatan minipigs sacrificed one week, 3 

months, 6 months, and 12 months after fixation of an intra-articular fracture of the hock joint. 

There was excellent/good agreement between expert researchers and the developed models in 

identifying chondrocytes/clones (U-net: R2=0.93, y=0.90×–0.69; median F1 score: 0.87 / YOLO: 

R2=0.79, y=0.95×; median F1 score: 0.67). Average chondrocyte density increased one week after 

fracture (from 774 to 856 cells/mm2), decreased substantially 3 months after fracture (610 cells/

mm2), and slowly increased 6 and 12 months after fracture (638 and 683 cells/mm2, respectively). 

Average detected clone density 3, 6, and 12 months after fracture (11, 11, 9 clones/mm2) was 

higher than the 4–5 clones/mm2 detected in normal tissue or one week after fracture and show 

local increases in clone density that varied across the joint surface with time. The accurate 

evaluation of cartilage cellularity and organization provided by this deep learning approach will 

increase objectivity of cartilage injury and regeneration assessments.
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INTRODUCTION

In research settings, histological analysis is a commonly used technique for evaluation 

of cartilage health, determining severity of osteoarthritis (OA), and evaluating efficacy 

of therapeutic approaches. It is common practice with this approach to evaluate cartilage 

cellularity and chondrocyte organization. Chondrocyte density estimated from histologic 

sections has been accepted as a measure of articular cartilage health. Previous work indicates 

that optimal chondrocyte density is necessary to maintain cartilage tissue, while declining 

chondrocyte density is associated with degeneration of articular cartilage in OA and with 

aging.1 In contrast, chondrocyte cloning - formation of non-linear clusters of chondrocytes 

- is considered one of the markers of osteoarthritis,1 although the significance and events 

responsible for cloning are not well understood. Semi-quantitative, subjective, categorical 

evaluations of cartilage cellularity, such as those performed during application of Mankin1 

and OARSI2 scoring, have limitations including uncertain accuracy and reproducibility.3 For 

these reasons, the ability to rapidly quantitate chondrocyte density and cloning could help 

advance understanding of these phenomena in the pathophysiology of osteoarthritis and in 

articular cartilage regeneration, repair, and aging.

One previously reported approach uses image analysis algorithms to automatically identify 

chondrocyte density and red intensity values of pixels within the segmented cartilage 

and assigns cellularity and PG depletion Mankin sub-scores based on deviation of those 

quantitative values from pre-defined normative values.4, 5 While that program achieved 

good agreement with human experts for the Mankin structural sub-score (linear regression; 

R2: 0.87, slope: 0.84) and the PG depletion sub-score (R2: 0.63, slope: 0.70), there 

was poor agreement with human experts on the cellularity sub-score (R2: 0.07, slope: 

0.21).4 This poor agreement may result from the simple thresholding segmentation and 

edge detection used to identify chondrocytes,4 two image analysis techniques which 

are far from being robust to the huge variation in tissue appearance during cartilage 

degeneration. Erroneous chondrocyte density calculations could artificially elevate the 

assigned cellularity sub-score by classifying it as either hypercellular or hypocellular.1 

Furthermore, difficulty in accurately segmenting chondrocytes substantially reduces the 

ability to automatically identify chondrocyte cloning. To accurately quantify cartilage 

cellularity and/or accurately assign cellularity scores, more sophisticated image analysis 

algorithms that can accommodate the wide variety of chondrocyte appearances and 

organization in degenerating cartilage are required.

Conveniently, modern deep-learning-based approaches have been reported to have achieved 

great success in a variety of computer vision tasks.6–10 A convolutional neural network 

(CNN) is one common deep learning method in which the model is trained to analyze 

a given image type by using pairs of similar input images and the corresponding correct 

output data (ground truth) – a technique called supervised learning. With this technique, a 

CNN model is able to learn inter-related hierarchical features from the image, which allows 

it to accurately classify, detect, and segment objects with variable appearances.8, 9 CNN-

based approaches have previously been applied very successfully in orthopedic research to 

perform tasks such as grading/classifying radiographic knee images11, 12 and segmenting 

bone and soft tissues from MR images.13–15 CNN-based approaches have also achieved 
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tremendous success in a variety of digital pathology applications. For example, Bejnordi 

et al have assessed different CNN models for detecting lymph node metastases in women 

with breast cancer, and achieved a model that outperforms expert pathologists.16 Similarly, 

Nagpal et al developed and validated a CNN model to stage prostate cancer, which resulted 

in higher accuracy than a group of pathologists.17 There are also CNN-based studies 

ranging from detecting sub-cellular (nuclei) components18, 19 to segmentations of glandular 

structures20, 21 in histology images.

However, applications to cartilage analysis have been more limited. Recent work by Powel 

et al 22 describes using a CNN-based image classifier to automatically assign a Bern score 

to evaluate chondrogenicity of engineered cartilage,23 and Rytky et al has developed a 

CNN model to automatically segment calcified cartilage to study its modification during 

OA progression.24 Based on this previous success, our goal in this work was to develop 

and implement methods to accurately map chondrocyte density and chondrocyte cloning 

across the entire articular cartilage surface using a combination of CNN models and spatial 

information. We aimed to adapt our previously trained U-net model25 and a “you only look 

once” (YOLO)8 model to segment individual chondrocytes and identify chondrocyte clones 

in cartilage. We hypothesized that fully automated chondrocyte density and clone detection 

achieved with CNN models would have excellent agreement with gold-standard human 

expert cell/clone identification. Further, we hypothesized that application of the trained 

models would be able to identify subtle progressive changes in chondrocyte cellularity and 

organization associated with development of post-traumatic osteoarthritis after a joint injury.

METHODS

CNN Models – U-net and “you only look once” (YOLO)

To accurately identify individual chondrocytes through the full depth of articular cartilage, 

we retrained our previously reported U-net model from scratch.25 The previous model had 

been developed by adding one batch normalization layer26 between each convolutional 

layer and its following ReLU activation function27 in the original U-net architecture.9 Zero-

padding was used for all the convolutional layers, allowing the output segmentation image to 

share the same size as the input image. The sigmoid activation function27 was used after the 

last convolutional layer to output values between 0 and 1 at each pixel. Under this adaption, 

the model takes the input image of size 512 × 512 × 3 (pixel x pixel x RGB) and outputs 

a single channel probability image (512 × 512), with each output pixel representing the 

probability of it being a chondrocyte. Pixels with predicted probability values higher than 

0.5 were labeled as cell pixels. To emphasize segmentation accuracy for smaller and more 

closely packed cells, such as would be found in the superficial zone or in a clone, additional 

images of superficial zone cartilage were included in the training set. The previous U-net 

model25 was then retrained to optimize a modified binary cross entropy loss function that 

was weighted to emphasize smaller superficial zone chondrocytes and chondrocytes that 

were closely adjacent (Figure 1).

To identify chondrocyte clones, the YOLO object detection model8 was used. YOLO 

predicts a set of bounding boxes to localize objects, with a label for each box representing 

the “class” of the detected object. To build our YOLO model, the contracting path of our 
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retrained U-net was copied, which allowed the YOLO model to utilize previously learned 

chondrocyte features (a method termed transfer learning). Additional convolutional layers 

and max pooling layers were stacked after the copied path to allow the YOLO model 

to learn local image context for the existence of a clone. To detect multiple clones that 

can appear within a single image, our YOLO model was implemented to predict one 

bounding box in each cell of an 8×8 grid defined over the 512×512 pixel input image 

(Figure 2). The bounding box information predicted in each grid cell included bounding box 

size, centroid coordinates, and a probability value (between 0 and 1) of detecting a clone 

centered within the grid cell (Figure 2). Bounding boxes with a probability value >0.5 were 

considered clones. Training the YOLO was achieved by optimizing a previously described 

loss function8 which forces clone detection with high-probability, closely fitting bounding 

boxes.

The U-net and YOLO models were trained using previously generated Safranin-O and 

fast green-stained histological sections of rabbit articular cartilage with varying degrees 

of arthritic changes induced by ACL transection28 and medial meniscus destabilization.29 

Sections were digitized using a stage scanner microscope (Olympus VS110, Olympus 

America Inc., Center Valley, PA, USA) at a resolution of 322.25 nm per pixel. 512 × 

512-pixel images encompassing chondrocytes/clones of varying size, shape, appearance, 

and zonal origin were cropped from the digitized histology sections. 325 training images, 

consisting of our previous 235 training images25 and additional 90 images of superficial 

zone cartilage, and a separate set of 24 validation images were used for retraining the U-net. 

A different set of 300 training images and 25 validation images was used for training the 

YOLO model.

Training images were cropped using ImageJ (NIH, https://imagej.nih.gov/ij/) software. All 

training and validation images for the U-net were manually segmented using MATLAB 

R2020a (The MathWorks, Natick, MA) by a single individual with >3 years’ experience 

identifying chondrocytes in histological sections of cartilage. Clones in the training images 

were annotated (enclosed in a bounding box) in MATLAB by the same individual, with a 

clone defined as a cluster that includes at least three different chondrocytes encapsulated by 

the same lacuna. Cloning validation images were developed from the consensus annotation 

by three expert cartilage researchers. To replicate in-practice variability of histology images, 

data augmentation including image rotation, mirroring, and brightness adjustment was 

applied to the training images for both models using the Python scikit-image library.30

The U-net and YOLO were implemented using the open-source deep learning framework 

Keras (https://keras.io/) with the TensorFlow backend. We would be available to share 

elements of our codes to the interested researchers. Models were trained using an NVIDIA 

Tesla K80 GPU. The U-net was trained for 100 epochs (requiring 120 minutes), while the 

YOLO was trained using 120 epochs (requiring 150 minutes). Inference time to analyze 

a 512 × 512 image was 0.1 s and 0.12 s for the U-net and YOLO, respectively. An F1 

score,21 which evaluates the ratio of true positive cell detections among all cell detections 

by the model, was calculated for each validation image at each epoch. The final U-net 

and YOLO models were selected based on achieving the highest average F1 score on 

the validation images in each training set. A secondary validation of the selected U-net 
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and YOLO models was then conducted using 30 different expert-annotated testing images 

unseen by the algorithm during training. Agreement between the trained CNN models and 

experts was evaluated using F1 scores and linear regression to evaluate chondrocyte and 

clone identification and intersection over union (IOU) to evaluate accuracy of chondrocyte 

segmentation. These non-normally distributed data (Shapiro-Wilk test; Prism 9, GraphPad 

Software LLC, San Diego, CA) are reported as medians with 95% confidence intervals 

(CIs).

Cellularity Changes after Joint Injury

The validated CNN models were then applied to existing sets of histological sections of 

articular cartilage in order to document the natural history of changes in chondrocyte density 

and organization after an intra-articular fracture (IAF) in a Yucatan minipig PTOA model.31 

In this model, impact-induced IAFs in the hock joint (ankle analog) of skeletally mature 

minipigs (average 24 months of age at fracture) are surgically fixed using open reduction 

internal fixation (ORIF). From previous31, 32 and ongoing studies, 5 μm-thick Safranin-O/

fast green/Wiegert’s hematoxylin-stained sagittal histological sections of the medial talus 

were available from animals sacrificed one week, 3 months, 6 months, and 12 months after 

fracture fixation. Histological tissue sections from joints of breed and age-matched healthy, 

unfractured pigs were also available. All sections had been prepared according to the same 

histological processing protocol2 and digitized as described above.

A continuous, 15-mm cartilage span centered within the weightbearing area was selected 

for analysis and segmented using a previously developed semi-automated segmentation 

algorithm4 (Figure 3). A sliding-window approach was then used to automatically divide 

the entire 15-mm cartilage span into 512 × 512-pixel image tiles (Figure 3-B), each of 

which was analyzed using the validated U-Net and YOLO models to segment individual 

chondrocytes and detect chondrocyte clones, respectively. Given that a chondrocyte or a 

clone may be split into adjacent image tiles by sliding-window locations and hence missed 

by the U-Net or YOLO, the process was repeated on additional image tiles of the same 

size acquired after shifting the sliding window by an offset of half the window size in the 

horizontal and then again in the vertical direction (Figure 3-B). Cell segmentations and clone 

bounding boxes in each image tile were projected back to the associated window location 

within the full cartilage geometry (Figure 3-C). Chondrocyte segmentations from all the 

regular tiles were projected first, then segmentations from the center span of the horizontally 

offset tiles were added, and finally segmentations from the center span of the vertically 

offset tiles were added. This method preserved the more accurate cell segmentations from 

the center of each tile and covered the seams between regular tiles (Figure 3-B). In contrast, 

all chondrocyte clone bounding boxes from both the regular and additional tiles were 

projected back to the cartilage segmentation, and subjected to non-maximal suppression33 to 

remove any redundant, less accurate bounding boxes.

Three different metrics were calculated to evaluate cartilage cellularity: chondrocyte density, 

clone density, and percentage of chondrocytes that reside in a clone. To calculate densities, 

the number of chondrocytes or clones whose centroid was within the segmented cartilage 

were divided by the cartilage area. Clone chondrocytes were defined as those whose 
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centroids were located within the bounding box of a clone (Figure 3-C). The number 

of clone chondrocytes was divided by the total number of chondrocytes identified in the 

cartilage. These three metrics were calculated for the entire joint, as well as mapped in 

1.5 mm increments across the weightbearing cartilage. The 30–40% positions articulated 

with the healing fracture line. These data were normally distributed (Shapiro-Wilk test); and 

therefore, one-way ANOVA with post-hoc Tukey’s tests was used to compare cellularity 

values between post-operative timepoints (normal, one week, 3 months, 6 months, and 

12 months; n = 5 for all). Repeated measures two-way ANOVA with post-hoc Tukey’s 

tests was used to evaluate differences between joint locations and post-operative timepoints 

(GraphPad Prism 9).

RESULTS

The optimal U-net was selected at the 82nd epoch with a median F1 score of 0.89 (95% CI: 

0.88 to 0.93) on the training validation images, and the optimal YOLO was selected at the 

105th epoch with a median F1 score of 0.80 (95% CI: 0.67 to 1.00) on the training validation 

images. Those F1 score values indicated good detection accuracy (good = 0.70–0.90)21 

by each model. In the secondary validation, the U-net achieved an excellent agreement 

with the average counts by the experts (Figure 4; R2 = 0.93, y = 0.90× – 0.69) and a 

close-to-excellent median F1 score (median: 0.87; 95% CI: 0.84 to 0.89). The average 

IOU between the U-net segmentation and manual segmentation of each chondrocyte was 

0.849, indicating high accuracy of U-net chondrocyte segmentations.34 The three expert 

researchers’ agreement identifying clones was good (ICC = 0.76).35 Despite relatively a 

lower median F1 score (median: 0.67; 95% CI: 0.57 to 0.89) for clone detection, the YOLO 

still achieved good agreement with the average counts by the experts (Figure 4; R2 = 0.79, 

y = 0.95×). Both models were found to be able to identify chondrocytes/clones of variable 

size, shape, and appearance (Figure 4).

Differences in cellularity were found between the normal and the different post-operative 

timepoints (Table 1). Average chondrocyte density one week after fracture (mean: 856 cells/

mm2; 95% CI: 748–963 cells/mm2) was slightly higher than normal chondrocyte density 

(mean: 774 cells/mm2; 95% CI: 742–806 cells/mm2; p=0.573) and significantly higher than 

at 3 months (mean: 610 cells/mm2; 95% CI: 491–729 cells/mm2; p=0.006), 6 months (mean: 

638 cells/mm2; 95% CI: 470–806 cells/mm2; p=0.016), and 12 months (mean: 683 cells/

mm2; 95% CI: 556–810 cells/mm2; p=0.077) after fracture (Figure 5-A). Clone density and 

percentage of chondrocytes in clones 3, 6, and 12 months after fracture was higher than 

in normal cartilage or at one week postoperatively, however these differences did not reach 

statistical significance (Figure 5-B, C; p>0.1 for all pair-wise comparisons).

Local cellularity differences were noted among the different post-injury timepoints. At the 

anterior positions, chondrocyte densities were lower 3, 6, and 12 months after fracture than 

after one week or in normal tissue. Cell density was the lowest 3 months after fracture and 

was significantly lower than densities in normal tissue or one week after fracture at the 10% 

(p=0.032/0.012), 20% (p=0.107/0.024), and 30% (p=0.006/0.039) positions (Figure 6-A). 

One week after fracture, chondrocyte densities in the posterior locations were higher than 

in normal tissue and significantly higher than at 3, 6 and 12 months: 60% (p=0.137, 0.049, 
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0.649 for 3, 6, 12 months, respectively), 70% (p=0.164, 0.096, 0.556), 80% (p=0.108, 0.010, 

0.428), 90% (p=0.023, <0.0001, 0.046), and 100% (p=0.002, < 0.0001, 0.067). Chondrocyte 

densities 3, 6, and 12 months after fracture were also lower than the normal group at the 

posterior positions, although these differences did not reach statistical significance.

Locally, significantly higher clone density/percentage of chondrocytes in clones was found 

3, 6, and 12 months after fracture (Figure 6-B, C; Table 2). Local clone density at 3 months 

was significantly higher than the normal group at the 70% position (p=0.013) which is 

moving into weightbearing tissue that was not directly affected by the fracture. By 6 and 

12 months after fracture, significantly higher clone densities than in the normal and/or 

one-week groups were found more peripherally in the joint (the 20% and 80% positions). 

Clone density at 6 months was significantly higher than in normal or one week at the 20% 

position (p=0.026, 0.021) and at 12 months clone density was higher than in the normal 

(p=0.057) and one-week (p=0.047) groups at the 80% position. Variations in the percentage 

of chondrocytes in a clone were very similar to the local variations of clone density (Figure 

6-C).

DISCUSSION

Histological analysis remains among the most commonly used research techniques to 

evaluate the health of cartilage. In this work, we trained, validated, and implemented two 

different CNN models to quantify the progressive chondrocyte cellularity changes after 

joint/cartilage injury. The trained U-net and YOLO models developed for this purpose 

were validated to be accurate for identifying chondrocytes and clones by achieving good 

agreement with manual assessment by expert researchers. These algorithms proved to be 

extensible for use identifying chondrocytes and chondrocyte clones in degenerating minipig 

cartilage, and they were able to identify progressive cellularity changes with time after joint 

injury.

While there are several CNN models that could be suitable for chondrocyte 

identification,7, 10 the U-net was selected for chondrocyte detection because it has 

demonstrated state-of-art performance on a similar cell detection task,9 and it provides 

boundary information from chondrocyte segmentation that can be useful for future studies 

related to co-localization of functional cellular stains and specific morphological structures. 

In contrast, as relatively little is known about the importance of the morphology of clones, 

a simple bounding-box-based detection method was used for clone detection in this work. 

The YOLO was selected over other bounding-box-based methods for its developmental and 

implementation simplicity. Specifically, it is a single CNN model that can be developed 

and trained end-to-end to predict bounding box probability and coordinates simultaneously.8 

Similar methods have two stages, requiring independent development of a bounding box 

generator and an image classifier,7, 36 which can be more laborious and slower. If clone 

morphology, rather than simple detection, becomes more important in future work, adapting 

the U-net trained to segment chondrocytes using transfer learning would likely be successful 

for that purpose.
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The U-net model reported here is a retrained version of our previously reported model 

which had been selected based on providing the lowest average loss value during training.25 

However, that model, chosen to minimize weighted loss at each pixel, did not correspond 

to the highest detection accuracy at the cell level. Therefore, in addition to modifications 

made to emphasize detection of small, closely packed chondrocytes, the retrained model 

was selected based on providing the highest F1 score, which reflected the best cell 

detection accuracy as compared with the gold-standard manual segmentations. To maximize 

functional accuracy, a similar process was followed during the training of the YOLO. This 

approach of selecting a model based on performance was used to avoid choosing an overfit 

model, while the secondary validation of the selected model (on different testing images) 

was intended to assess generalizability to unseen image data.

Estimated chondrocyte densities in pig cartilage were close in magnitude to previously 

reported values in a large animal (~1000 cells/mm2).37 Reduced chondrocyte density and 

more active cloning was found beginning 3 months after intra-articular fracture, which 

corroborates the elevated histological scoring of PTOA previously reported in this animal 

model at the same time point.31 Chondrocyte density began to progressively, though not 

significantly, rebound by 6 months (increased 28 cells/mm2; p=0.716) and 12 months 

(increased 73 cells/mm2; p=0.5734) after the fracture. Despite greater clone densities at 

6 and 12 months, the progressive increases in chondrocyte density were found to be mainly 

from increases in chondrocytes not associated with clones (non-clone related chondrocyte 

density: 580, 596, 642 cells/mm2 for 3, 6, and 12 months after fracture, respectively). At 6 

and 12 month postoperative timepoints, the combination of lower than normal chondrocyte 

density, increased number of chondrocyte clones, and increasing chondrocyte cellularity 

outside clones indicate progressive arthritic changes, but not necessarily a linear progression 

through the stages of cellularity outlined in the Mankin scoring system.1 Local increases 

in clone density at 3 months were found close to the region that articulates with the 

healing fracture line, and then more anteriorly and posteriorly relative to that location by 6 

months and 12 months after fracture. These findings would indicate spatial progression of 

cartilage abnormalities through the joint that are associated with time after injury, however 

determining the mechanism responsible for this would require a separate study.

There are several limitations in this work that need to be considered. The first is that we 

have trained the YOLO model to identify a chondrocyte clone based on our empirical 

definition of >3 non-linearly organized chondrocytes in a single lacuna. These criteria were 

chosen to provide a standardized morphological description of the appearance of a specific 

feature of osteoarthritic cartilage identified in the Mankin scoring scheme as “cloning”.1 

This term “clone” has been used interchangeably with the term “cluster” or “proliferation” 

in other scoring schemes.2 A true clone would imply that all the chondrocytes present in 

any given instance of this feature were derived from a single cell, and such an assessment 

would require a detailed analysis of cell proliferation markers that is not feasible in Safranin-

O sections. While determining the true clonal/proliferative nature of the cells in these 

features is outside the scope of this work, a future study combining this automated feature 

detection approach with specific stages of chondrocyte proliferation/activity could provide 

important information about the time course of chondrocyte function throughout the course 

of osteoarthritic cartilage degeneration after joint injury. It would also be interesting to relate 
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such findings to local collagen disruption or proteoglycan concentrations as such covariates 

would presumably be closely related to cellular response. However, our model is presently 

trained to identify clones independent of surrounding tissue appearance, and as such it 

cannot provide any mechanistic or associative information relating chondrocyte proliferation 

to tissue structure/composition.

Secondly, the inter-observer agreement on clone identification using this definition was 

relatively lower (ICC = 0.76) than expert agreement achieved for identification of individual 

chondrocytes (ICC = 0.87).25 However, given the much smaller number of clones in an 

image compared to the total number of chondrocytes, this reduction in ICC value is a 

function of disagreement on a very small number of clones in the full data set. Another 

limitation was that the YOLO detected some false positive clones among sparsely distributed 

chondrocytes and some false detections of small clone sizes (Figure 4). A possible reason 

for the false positives is that the training images included mostly clustered chondrocytes, 

leaving the model without sufficient training to recognize sparser chondrocyte patterns. A 

possible reason for identifying artificially small clones was that the YOLO was trained using 

rabbit cartilage and clones from rabbit cartilage are smaller than those that can develop 

in much thicker pig cartilage. Retraining using additional images of sparse chondrocytes, 

larger clones, and multiple species could potentially further improve performance over the 

good agreement with experts that was achieved with this version of the YOLO. Finally, 

there were few statistically significant differences in clone density associated with time 

after fracture in the minipig model of PTOA, which is attributed both to the presence of 

some clones in normal minipig talar cartilage, and to the small number of animals available 

for each study group (n = 5) in this secondary analysis of existing histological sections. 

As hypothesized, progressive chondrocyte/clone density changes were identified, although 

adequately powered future studies will be needed to fully document the natural history of 

chondrocyte activity in joints sustaining intra-articular fractures.

In conclusion, two CNN models were developed, validated, and implemented to document 

progressive changes in chondrocyte density & cloning in a minipig model of intra-articular 

fracture, which is known develop post-traumatic OA. The accuracy of the resulting 

chondrocyte segmentation and clone identification was very similar to the gold-standard 

of human expert chondrocyte/clone identification. This fully objectively obtained cellularity 

data could be incorporated into an automated image-analysis based histological scoring 

system for OA progression, or used as a stand-alone technique to quantify changes in 

cellularity and chondrocyte organization in articular cartilage. This deep-learning-powered 

approach provides objective and accurate cartilage health information and can thus better 

facilitate studies of cartilage injury and regeneration.
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Figure 1: 
This figure illustrates the U-Net model to developed to identify individual chondrocytes. The 

U-Net was trained to predict the segmentation image given an input histological section (top 

left). The difference between the predicted and ground truth segmentation image at each 

pixel is quantified using the binary cross entropy loss function and weighted using the pre-

computed weight map (top right). Pixels of smaller cells in the ground truth segmentation 

image were assigned higher weight values (warmer color), forcing the U-Net to identify 

smaller chondrocytes. Pixels between closely adjacent chondrocytes (distance less than 1.5 

microns) in the ground truth segmentation image are also assigned with higher weight value, 

which forced the U-Net to learn to separate adjacent chondrocytes.
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Figure 2: 
This figure illustrates the YOLO model developed to identify chondrocyte clones. The 

YOLO implementation predicted a total of 64 bounding boxes, one at each cell of an 

8×8 grid spanning the entire input image. This allowed the detection of multiple clones 

in a single image. If the center of an annotated clone lies within a grid cell, only the 

associated bounding box (e.g., two thicker boxes in the prediction) in that grid cell should 

be predicted by the model to match the coordinates of the ground truth box of that clone, 

and the predicted probability value should approach 1; if a grid cell does not contain a 

clone’s center, the associated box from that grid cell should be simply predicted with a 

probability value of 0, and its coordinates do not matter. In practice, the probability value 

is a continuous number ranging between 0 and 1 and a predicted bounding box with 

probability value larger than 0.5 is considered a clone.
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Figure 3: 
This figure illustrates the method to analyze the weightbearing area of the minipig talus 

cartilage. A) For a given digitized histological section, the center of the weight bearing 

area was determined (vertical dash line), and 15-mm horizontal span of cartilage (7.5 mm 

for both the anterior and posterior) was segmented (blue boundaries) to be analyzed. B) 

Illustration of the sliding window approach to cover the segmented cartilage in an example 

cartilage segmentation (white region). A window slides from top to bottom in a column-

by-column-basis with the stride of the window side length to cover the whole segmented 

cartilage. These regular windows are offset by half of window side length in vertical and 

horizontal direction to cover the seams between regular windows. Image tiles are cropped 

from all the window locations and analyzed by the U-net and YOLO models. C) Resulting 

cell segmentations and clone detections on cartilage by the U-net and YOLO projected back 

to the cartilage. Individual chondrocytes segmentations from the U-net were compared to the 

clones (green bounding boxes) detected by the YOLO in order to divide chondrocytes into 

clone chondrocytes (yellow segmentations) and regular chondrocytes (cyan segmentations).
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Figure 4: 
(Upper) The trained U-net was able to accurately detect chondrocyte of different size, shape, 

appearance and zonal origin. It has achieved an excellent agreement with expert researchers 

on counting chondrocytes. (Lower) The trained YOLO model was able to accurately detect 

clones of different sizes and geometry, with few false positive (red box) or false negative 

(blue boxes). The trained YOLO model achieved good agreement with expert researchers on 

identifying clones on 30 images not used to train the model.
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Figure 5: 
This figure shows the plots of chondrocytes density, clone density, and percentage of 

chondrocytes in clones at different post-operative timepoints from the entire cartilage region. 

A) Chondrocyte densities in the entire cartilage span demonstrated a slight increase one 

week after fracture and then decreased after 3 months. The asterisk (*) indicates level 

of significance: * for p < 0.05 and ** for p < 0.01. B, C) Clone densities/percentages 

of chondrocyte in clone were low in the normal and early (one week) after fracture and 

increased after 3 months, although this increase was not significant.
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Figure 6: 
Maps of chondrocyte density, clone density, and percentage of chondrocytes in clones 

plotted in 1.5 mm increments along the weightbearing cartilage surface. The gray bar 

indicates the part of the talus in direct contact with the fracture line during the fracture-

inducing impact. The curve for each timepoint represents the mean cellularity metric value 

among the 5 different animals at that timepoint. Color-filled circles represent pair-wise 

comparisons with p < 0.05. A) Chondrocyte densities in normal and one-week post-fracture 

tissue were higher than at later post-fracture time points, particularly the 3-month time point 

and along the anterior portion of the weightbearing cartilage. B, C) Significantly higher 

values of clone density and the percentage of chondrocytes in clones were found 3, 6, and 

12 months after fracture. Compared to the relative uniformity of clone distribution over the 

weightbearing cartilage in the normal and 1-week post-fracture groups, the local increases in 

clone density adjacent to the tissue damaged by the fracture indicate the pathological nature 

of the clones detected by our model.
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Table 1:

This table summarizes chondrocyte density values (cells/mm2) at different post-operative timepoints. Values 

are mapped in 10% increments across the weightbearing articular cartilage surface and shown as a mean 

with lower and upper 95% confidence interval bounds. The articular surface between 30% to 40% (shaded 

columns) was the portion of the talus that articulated with the fracture line in the tibia.

Anterior Posterior
Entire Surface

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Normal

Mean 868 848 903 814 708 701 673 729 719 730 774

Lower 1035 987 1149 914 797 886 789 798 824 876 742

Upper 701 709 656 715 618 517 557 660 615 584 806

One Week

Mean 899 903 846 795 810 837 816 864 923 918 856

Lower 1027 979 942 936 966 997 933 959 1015 977 748

Upper 772 826 750 654 654 678 698 768 830 859 963

3 Months

Mean 583 609 568 600 626 609 595 625 627 545 610

Lower 661 694 715 716 772 891 822 823 807 958 491

Upper 506 524 421 483 479 327 368 426 447 131 729

6 Months

Mean 782 795 769 669 731 568 572 540 505 470 638

Lower 862 975 1135 947 1151 730 774 776 701 818 470

Upper 701 615 402 391 311 405 369 304 310 121 806

12 Months

Mean 759 745 739 685 643 704 668 696 650 660 683

Lower 1048 991 888 821 803 1122 861 832 815 818 556

Upper 470 498 590 548 483 285 475 560 486 502 810
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Table 2:

This table summarizes clone density (clone count), with values expressed as clones/mm2 (number clones) at 

different post-operative timepoints. Values are mapped in 10% increments across the weightbearing articular 

cartilage surface and shown as a mean with lower and upper 95% confidence interval bounds. The articular 

surface between 30% to 40% (shaded columns) was the portion of the talus that articulated with the fracture 

line in the tibia.

 

Anterior Posterior Entire 
Surface10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Normal

Mean 5 (2) 4 (1) 4 (2) 4 (2) 5 (2) 6 (2) 2 (1) 2 (1) 3 (1) 5 (2) 5 (14)

Lower 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (1) 1 (5)

Upper 12 (4) 12 (3) 10 (5) 15 (7) 11 (4) 15 (5) 5 (2) 5 (2) 6 (3) 8 (3) 8 (23)

One Week

Mean 2 (1) 4 (1) 2 (1) 3 (1) 2 (1) 4 (1) 6 (2) 1 (0) 3 (1) 7 (3) 4 (11)

Lower 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (4)

Upper 8 (3) 12 (4) 8 (2) 10 (3) 5 (2) 7 (3) 14 (3) 4 (1) 9 (3) 16 (6) 5 (19)

3 Months

Mean 10(6) 8(5) 9(5) 5(3) 2(1) 21(9) 20(12) 10(5) 11(6) 8(5) 11(58)

Lower 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0 (3)

Upper 21 (12) 21 (13) 20 (11) 18 (11) 6 (3) 44 (19) 51 (30) 21 (11) 27 (14) 18 (10) 21 (113)

6 Months

Mean 12 (7) 21 (12) 13 (7) 7 (5) 9 (6) 11 (7) 9 (5) 9 (6) 6 (5) 8 (7) 11 (68)

Lower 0(0) 0(0) 0(0) 0(0) 0(0) 2(3) 2(2) 0(0) 0(0) 0(0) 5 (44)

Upper 31 (17) 42 (26) 28 (18) 18 (13) 20 (15) 19 (11) 16 (9) 18 (12) 17 (14) 18 (15) 16 (92)

12 Months

Mean 9 (4) 9 (3) 8 (3) 8 (4) 7 (4) 6 (4) 11 (7) 17 (13) 8 (5) 11 (8) 9 (58)

Lower 0 (0) 0 (0) 2 (1) 0 (0) 3 (3) 2 (0) 0 (0) 0 (0) 2 (1) 1 (0) 3 (12)

Upper 18 (7) 21 (4) 13 (8) 16 (5) 11 (8) 11 (8) 22 (16) 36 (29) 14 (9) 20 (17) 15 (98)
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